Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Default Sex and Single Gene Sex Determination in Dioecious Plants.

Identifieur interne : 000488 ( Main/Exploration ); précédent : 000487; suivant : 000489

Default Sex and Single Gene Sex Determination in Dioecious Plants.

Auteurs : Quentin Cronk [Canada] ; Niels A. Müller [Allemagne]

Source :

RBID : pubmed:32849717

Abstract

A well-established hypothesis for the evolution of dioecy involves two genes linked at a sex-determining region (SDR). Recently there has been increased interest in possible single gene sex determination. Work in Populus has finally provided direct experimental evidence for single gene sex determination in plants using CRISPR-Cas9 to knock out a single gene and convert individuals from female to male. In poplar, the feminizing factor popARR17 acts as a "master regulator", analogous to the mammalian masculinizing factor SRY. The production of fully functional males from females by a simple single gene knockout is experimental evidence that an antagonistic male-determining factor does not exist in Populus. Mammals have a "default sex" (female), as do poplar trees (Populus), although the default sex in poplars is male. The occurrence of single gene sex determination with a default sex may be much commoner in plants than hitherto expected, especially when dioecy evolved via monoecy. The master regulator does not even need to be at the SDR (although it may be). In most poplars the feminizing factor popARR17 is not at the SDR, but instead a negative regulator of it. So far there is little information on how high-level regulators are connected to floral phenotype. A model is presented of how sex-determining genes could lead to different floral morphologies via MADS-box floral developmental genes.

DOI: 10.3389/fpls.2020.01162
PubMed: 32849717
PubMed Central: PMC7403218


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Default Sex and Single Gene Sex Determination in Dioecious Plants.</title>
<author>
<name sortKey="Cronk, Quentin" sort="Cronk, Quentin" uniqKey="Cronk Q" first="Quentin" last="Cronk">Quentin Cronk</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC</wicri:regionArea>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Muller, Niels A" sort="Muller, Niels A" uniqKey="Muller N" first="Niels A" last="Müller">Niels A. Müller</name>
<affiliation wicri:level="1">
<nlm:affiliation>Thünen Institute of Forest Genetics, Grosshansdorf, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Thünen Institute of Forest Genetics, Grosshansdorf</wicri:regionArea>
<wicri:noRegion>Grosshansdorf</wicri:noRegion>
<wicri:noRegion>Grosshansdorf</wicri:noRegion>
<wicri:noRegion>Grosshansdorf</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32849717</idno>
<idno type="pmid">32849717</idno>
<idno type="doi">10.3389/fpls.2020.01162</idno>
<idno type="pmc">PMC7403218</idno>
<idno type="wicri:Area/Main/Corpus">000124</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000124</idno>
<idno type="wicri:Area/Main/Curation">000124</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000124</idno>
<idno type="wicri:Area/Main/Exploration">000124</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Default Sex and Single Gene Sex Determination in Dioecious Plants.</title>
<author>
<name sortKey="Cronk, Quentin" sort="Cronk, Quentin" uniqKey="Cronk Q" first="Quentin" last="Cronk">Quentin Cronk</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC</wicri:regionArea>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Muller, Niels A" sort="Muller, Niels A" uniqKey="Muller N" first="Niels A" last="Müller">Niels A. Müller</name>
<affiliation wicri:level="1">
<nlm:affiliation>Thünen Institute of Forest Genetics, Grosshansdorf, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Thünen Institute of Forest Genetics, Grosshansdorf</wicri:regionArea>
<wicri:noRegion>Grosshansdorf</wicri:noRegion>
<wicri:noRegion>Grosshansdorf</wicri:noRegion>
<wicri:noRegion>Grosshansdorf</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A well-established hypothesis for the evolution of dioecy involves two genes linked at a sex-determining region (SDR). Recently there has been increased interest in possible single gene sex determination. Work in
<i>Populus</i>
has finally provided direct experimental evidence for single gene sex determination in plants using CRISPR-Cas9 to knock out a single gene and convert individuals from female to male. In poplar, the feminizing factor
<i>popARR17</i>
acts as a "master regulator", analogous to the mammalian masculinizing factor SRY. The production of fully functional males from females by a simple single gene knockout is experimental evidence that an antagonistic male-determining factor does not exist in
<i>Populus</i>
. Mammals have a "default sex" (female), as do poplar trees (
<i>Populus</i>
), although the default sex in poplars is male. The occurrence of single gene sex determination with a default sex may be much commoner in plants than hitherto expected, especially when dioecy evolved
<i>via</i>
monoecy. The master regulator does not even need to be at the SDR (although it may be). In most poplars the feminizing factor
<i>popARR17</i>
is not at the SDR, but instead a negative regulator of it. So far there is little information on how high-level regulators are connected to floral phenotype. A model is presented of how sex-determining genes could lead to different floral morphologies
<i>via</i>
MADS-box floral developmental genes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32849717</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>11</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Default Sex and Single Gene Sex Determination in Dioecious Plants.</ArticleTitle>
<Pagination>
<MedlinePgn>1162</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2020.01162</ELocationID>
<Abstract>
<AbstractText>A well-established hypothesis for the evolution of dioecy involves two genes linked at a sex-determining region (SDR). Recently there has been increased interest in possible single gene sex determination. Work in
<i>Populus</i>
has finally provided direct experimental evidence for single gene sex determination in plants using CRISPR-Cas9 to knock out a single gene and convert individuals from female to male. In poplar, the feminizing factor
<i>popARR17</i>
acts as a "master regulator", analogous to the mammalian masculinizing factor SRY. The production of fully functional males from females by a simple single gene knockout is experimental evidence that an antagonistic male-determining factor does not exist in
<i>Populus</i>
. Mammals have a "default sex" (female), as do poplar trees (
<i>Populus</i>
), although the default sex in poplars is male. The occurrence of single gene sex determination with a default sex may be much commoner in plants than hitherto expected, especially when dioecy evolved
<i>via</i>
monoecy. The master regulator does not even need to be at the SDR (although it may be). In most poplars the feminizing factor
<i>popARR17</i>
is not at the SDR, but instead a negative regulator of it. So far there is little information on how high-level regulators are connected to floral phenotype. A model is presented of how sex-determining genes could lead to different floral morphologies
<i>via</i>
MADS-box floral developmental genes.</AbstractText>
<CopyrightInformation>Copyright © 2020 Cronk and Müller.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cronk</LastName>
<ForeName>Quentin</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Müller</LastName>
<ForeName>Niels A</ForeName>
<Initials>NA</Initials>
<AffiliationInfo>
<Affiliation>Thünen Institute of Forest Genetics, Grosshansdorf, Germany.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>07</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">ARR17</Keyword>
<Keyword MajorTopicYN="N">Diospyros</Keyword>
<Keyword MajorTopicYN="N">MADS-box</Keyword>
<Keyword MajorTopicYN="N">OGI</Keyword>
<Keyword MajorTopicYN="N">Populus</Keyword>
<Keyword MajorTopicYN="N">SRY</Keyword>
<Keyword MajorTopicYN="N">dioecy</Keyword>
<Keyword MajorTopicYN="N">monoecy</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>05</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>07</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>8</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>8</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32849717</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2020.01162</ArticleId>
<ArticleId IdType="pmc">PMC7403218</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 1991 May 9;351(6322):117-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2030730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1990 Jul 19;346(6281):240-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1695712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2020 Feb 18;16(2):e1008566</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32069274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1990 Nov 29;348(6300):448-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2247149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1934 Nov;19(6):552-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17246737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Genet. 1958;9:217-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13520443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2015 Nov 6;350(6261):688-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26542573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biol. 2020 Jun 30;18(1):78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32605573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 1970 Aug 6;259(828):119-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4399057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2019 Apr;98(1):97-111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30556936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2017 Nov 2;8(1):1279</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29093472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2019 Aug;5(8):801-809</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31383971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2017 Aug 18;357(6352):717-720</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28818950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Apr;166(1):39-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15760349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2014 Oct 31;346(6209):646-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25359977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2018 Sep 28;9(1):3969</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30266991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Jan 22;427(6972):348-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14737167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2020 Feb 14;21(1):38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32059685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Jun;18(6):965-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18463302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2020 Jun;6(6):630-637</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32483326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2015 Jul;24(13):3243-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25728270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2020 Jun 9;11(1):2902</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32518223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2016 Apr;103(4):587-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26993970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Cell Dev Biol. 2010 Feb;21(1):129-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19948236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Dec 07;6:1030</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26697024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2020 Jun;32(6):1790-1796</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32220850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Jan 08;6:18917</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26742857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2012;8(7):e1002798</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22807687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2020 May 21;10(1):8413</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32439903</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
<li>Canada</li>
</country>
<region>
<li>Colombie-Britannique </li>
</region>
<settlement>
<li>Vancouver</li>
</settlement>
<orgName>
<li>Université de la Colombie-Britannique</li>
</orgName>
</list>
<tree>
<country name="Canada">
<region name="Colombie-Britannique ">
<name sortKey="Cronk, Quentin" sort="Cronk, Quentin" uniqKey="Cronk Q" first="Quentin" last="Cronk">Quentin Cronk</name>
</region>
</country>
<country name="Allemagne">
<noRegion>
<name sortKey="Muller, Niels A" sort="Muller, Niels A" uniqKey="Muller N" first="Niels A" last="Müller">Niels A. Müller</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000488 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000488 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32849717
   |texte=   Default Sex and Single Gene Sex Determination in Dioecious Plants.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32849717" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020